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The Bayesian estimation of rating curves: 
principles of the BaRatin method
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Establishing probabilistic streamflow data



DATA MODEL
MEASUREMENTS CONTROLS
STATISTICS HYDRAULICS

Q

Develop a practical calibration technique to:

• Combine data (measurements) and hydraulic knowledge

• Make expert knowledge and assumptions easier to defend and review

• Account for data and hydraulics uncertainties 

• Provide discharge uncertainties

BaRatin (Bayesian rating curves)
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BaRatinAGE software
• Graphical interface (Java) and user manual
• Freely available in French, English and other languages
• Open-source (GPL3), codes available on GitHub
• ~200 registered users



Rating curve 
uncertainty 
methods

Intervalles d’incertitude à 95% des 
hydrogrammes de l’Isère à 
Grenoble

Kiang et al. (2018)
Comparison of 7 methods for rating 
curve uncertainty

New methods have been 
developed in the past
decade to tackle practical
and theoretical issues of the 
existing ISO/WMO method
(which no hydrological
service use routinely).

BaRatin is among the 3 that
are used operationally, and 
likely the most widely
released. 
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ISO Bristol

BayBiBaRatin

VPMNVE

GesDyn



8

The BaRatin method for rating curves

 Introduction

 Hydraulic principles behind the rating curve

 Rating curve estimation

 Going further



Hydraulic controls

• Physical properties of a channel which determine the relationship 

between stage and discharge at a location in the channel 

(World Meteorological Organization, 2012)

Section control Channel control

Fall (critical flow: chocked flow)

Upstream water level ~ horizontal

« Emptying bucket »

No fall (friction-dominated flow)

Water level ~ parallel to riverbed



Le Gapeau, France

Le Golo, FranceMahurangi,

New Zealand

L’Ardèche, France

Section controls



L’Isère, France La Sarre, France

L’Ardèche, France La Saône, France

Channel controls



Depending on the water level, differing controls may appear or 
disappear. Several controls may add up.

Hydraulic controls

Main 
channel

Floodplain

Upstream
riffle

Downstream
riffle



control1 

segment1

control2

segment2

control3

segment3

control4

segment4

Cross-section Streamwise profile

Hydraulic analysis

The main controls are identified 

or assumed.

The succession of controls over 

rating curve segments is 

represented by a matrix.

Upstream
riffle

Downstream
riffle

Main 
channel Floodplain



Each control can be modelled as: Q = a(h-b)c

control1 

segment1

control2

segment2

control3

segment3

control4

segment4

Q = a2(h-b2)
c2

κ2

Q = a3(h-b3)
c3

κ3

Q = a3(h-b3)
c3 + a4(h-b4)

c4

κ4

κmax

Q = a1(h-b1)
c1

κ1

Activation stages

Rating curve equation
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𝑄 𝐻 = 𝐾𝑆 𝑆 𝐵𝑤 𝐻 − 𝑏 5/3

Strickler coefficient

a

• Wide, rectangular channel (fairly uniform flow)

Standard controls in BaRatinAGE



a

𝑄 𝐻 = 𝐶𝑟 2𝑔 𝐵𝑤 𝐻 − 𝑏 1.5

Discharge coefficient  ≈ 0.4 gravity ≈ 9.81 m/s²

• Rectangular weir / natural riffle

Standard controls in BaRatinAGE



Discharge coefficient ≈ 0.31

a

𝑄 𝐻 = 𝐶𝑡 2𝑔 tan 𝑣/2 𝐻 − 𝑏 2.5

• Triangular weir / V-notch

Standard controls in BaRatinAGE
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Standard controls in BaRatinAGE

Section controls Channel controls

Unknown controls

𝑄 = 𝑎 ℎ − 𝑏 𝑐
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Approximation of natural controls

• Attention! The geometry of a channel control is an average of the 
section that extends downstream and upstream of the gauge

River Derwent, UK Waimakariri, New ZealandUpper Truckee River, USA
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Approximation of natural controls

• Approximation of a compound channel using 2 recangular channels
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Approximation of natural controls

• Approximation of a complex critical section (natural riffle) by two 
nested rectangular weirs
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Approximation of natural controls

• Attention! The overflow width of the weir is counted perpendicular to 
the direction of flow

b

b
b

1

b
2

b
3



2 Bayesian inference

Example of a weir: 𝑄 ℎ = 𝑎 ℎ − 𝒃 𝑐

The Altier River at La Goulette, 
France (EDF-DTG) 24

Bayesian inference of hydraulic parameters



2 Bayesian inference

Prior knowledge:  b = 0.2 m ± 0.4 m

25

b

Prior

Bayesian inference of hydraulic parameters
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And now what?...

Once we have the equation of the rating curve…
… we need to estimate parameters 𝑘𝑖 , 𝑎𝑖 , 𝑐𝑖 (𝑏𝑖 are deduced by continuity)

𝑄 ℎ =

0
𝑎1 ℎ − 𝑏1

𝑐1

𝑎2 ℎ − 𝑏2
𝑐2

𝑎3 ℎ − 𝑏3
𝑐3

𝑎3 ℎ − 𝑏3
𝑐3 + 𝑎4 ℎ − 𝑏4

𝑐4

si ℎ < 𝑘1
si 𝑘1 ≤ ℎ < 𝑘2
si 𝑘2 ≤ ℎ < 𝑘3
si 𝑘3 ≤ ℎ < 𝑘4

si 𝑘4 ≤ ℎ

To be estimated: 
3 parameters
per control
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The magics of Bayesian inference

𝒚 : observations 
(stage-discharge
pairs: the gaugings)

𝜽 : parameters of the 
rating curve

The "posterior" distribution of the parameters of the 
rating curve can be computed using Bayes theorem:

Normalization
constant

Likelihood

Reverend
Thomas Bayes 
(1702-1761)

Prior distribution

Posterior
distribution



28

The magics of Bayesian inference

The posterior distribution is sampled by the Markov 
Chains Monte Carlo method (MCMC, Metropolis 
algorithm). 

𝜃1

iterations

Current point



Example of a weir: 𝑄 ℎ = 𝑎 ℎ − 𝒃 𝑐

Altier River at Goulette, France (EDF-DTG)
29

Bayesian inference of hydraulic parameters



b

Prior knowledge:  b = 0.2 m ± 0.4 m

30

A priori

Bayesian inference of hydraulic parameters



Prior knowledge: b = 0.2 m ± 0.4 m
A posteriori :  b = 0.35 m ± 0.06 m

31

b

Prior

Posterior

Observations (gaugings):

Bayesian inference of hydraulic parameters

Realization
MaxPost (0.35 m)



The "spaghetti" approach

Posterior distribution is sampled using MCMC techniques

32

Parametric
uncertainty
intervals

MaxPost
Spaghetti

+ Structural/Remnant uncertainty:
What is lacking to explain the scatter of 
the gaugings around the rating curve



The information contents of the measurements and of the hydraulic

knowledge are combined.

Possible interpretations:

1. The hydraulic estimation is refined using the measurements

2. The rating is adjusted to the measurements under hydraulic

constraints

Prior rating Measurements (uncertain) Posterior rating

* =

Bayesian estimation of the rating curve

Example: the Ardèche at Sauze
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Good!
(‘stationary’ random walk)

Not so good…
(clear trends)

Practically: Check MCMC realizations (traces)
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Practically: 

Check there is no conflit between prior and posterior

Not 
good!
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Practically: 

Check there is no conflit between prior and posterior

Not good!
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Good!

Practically: 

Check there is no conflit between prior and posterior
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Good!

Practically: 

Check there is no conflit between prior and posterior
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If there appears to be a conflict:

 Check that the calculations went well (convergence of MCMC 

iterations)

 Check the values of the priors (do not set them using the results or 

the gaugings used in the estimation!)

 Review your assumptions on hydraulic controls, test other 

hydraulic configurations

 Check the gaugings and their uncertainties

Practically: 

Check there is no conflit between prior and posterior
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Establishing probabilistic streamflow data



Uncertainty budgets help to rank sources of error and improve 
the measurement process

41

Uncertainty budgets 

 Reflects the measurement
uncertainties of the stage records

 Reflects the (limited) information 
contents of the priors and 
observations (the gaugings)

 Combines parametric and 
structural uncertainties

 Structural uncertainty reflects the 
limitations of the rating curve
model for describing the real 
hydraulic conditions of the site 
(complex controls, shifts, 
hysteresis, variable backwater…)



Uncertainty budgets help to rank 
sources of error and improve the 
measurement process

42

Uncertainty budgets 

Low flows



Uncertainty budgets help to rank 
sources of error and improve the 
measurement process

43

Uncertainty budgets 

Intermediate flows



Uncertainty budgets help to rank 
sources of error and improve the 
measurement process

44

Uncertainty budgets 

High flows
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Calculation code for estimating any model and using it for 

prediction

Extension of BaRatin: BaM!

Derived parameters

𝜓1,….,𝜓𝑁4

Model

𝒀 = 𝑀 (𝑿; 𝜽)

Parameters

𝜃1,…., 𝜃𝑁𝑝𝑎𝑟

Input variable 1

𝑋1,1,…., 𝑋1,𝑁

Input variable 𝑁𝑋
𝑋𝑁𝑥,1,…., 𝑋𝑁𝑥,𝑁

Model 

configuration
State variable 1

𝑍1,1,…., 𝑍1,𝑁

State variable 𝑁𝑍
𝑍𝑁𝑧,1,…., 𝑍𝑁𝑧,𝑁

Output variable 1

𝑌1,1,…., 𝑌1,𝑁

Output variable 𝑁𝑌
𝑌𝑁𝑌,1

,….,𝑌𝑁𝑌,𝑁

Schematisation of BaM! (Renard, 2017)



BaRatin-SPD (stage-period-discharge): rating changes due to bed 

evolution at known times

1
2
3
4
5

47
𝑄 ℎ, 𝑖period

PhD of Valentin Mansanarez (2016)

Mansanarez et al. (2019)

Rating shifts due to bed evolution



BaRatin-SGD (stage-gradient-discharge): hysteresis due to transient flow
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PhD of Valentin Mansanarez (2016)
𝑄 ℎ,

𝜕ℎ

𝜕𝑡

Complex rating curves



Complex rating curves
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PhD of Valentin Mansanarez (2016)

Mansanarez et al. (2016), WRR

𝑄 ℎ1, ℎ2

Downstream
stage

BaRatin-SFD (stage-fall-discharge): variable backwater

h1 h2



Modified channel control equation with vegetation roughness added

50Perret et al. (2021)

Rating curves affected by aquatic vegetation

𝑄 ℎ, 𝑡 =
1

𝑛𝑏
2 + 𝑛𝑣

2

𝐵 𝑆0 ℎ 𝑡 − 𝑏 𝑐

Shields Jr. (2017)


